How do you use the limit comparison test to determine if Sigma n/(n^2+1) from [1,oo) is convergent or divergent?

1 Answer
Jan 23, 2017

See below.

Explanation:

n/(n^2+n) < n/(n^2+1) < n/n^2 or

1/(n+1) < n/(n^2+1) < 1/n

Here sum_(n=1)^oo1/(n+1) le sum_(n=1)^oon/(n^2+1)le sum_(n=1)^oo1/n

but

1+sum_(n=1)^oo1/(n+1) =sum_(n=1)^oo1/n =oo

so sum_(n=1)^oon/(n^2+1) is divergent