How do you use the power reducing formulas to rewrite the expression #sin^4xcos^4x# in terms of the first power of cosine? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer A. S. Adikesavan Feb 10, 2017 #1/128(3-4cos(2x)+cos(4x))# Explanation: Use #sin 2A=2sin A cos A#, #sin^2A=1/2(1-cos 2A) and cos^2A=1/2(1+cos 2A)# #sin^4xcos^4x# #=(sin(2x)/2)^4=1/16(sin^2(2x))^2# #=1/16(1/2(1-cos2x))^2# #=1/64(1-2cos(2x)+cos^2(2x))# #=1/64(1-2cos(2x)+1/2(1+cos(4x)))# #=1/128(3-4cos(2x)+cos(4x))# Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for #sin 2x = cos x# for the interval #[0,2pi]#? How do you find all solutions for #4sinthetacostheta=sqrt(3)# for the interval #[0,2pi]#? How do you simplify #cosx(2sinx + cosx)-sin^2x#? If #tan x = 0.3#, then how do you find tan 2x? If #sin x= 5/3#, what is the sin 2x equal to? How do you prove #cos2A = 2cos^2 A - 1#? See all questions in Double Angle Identities Impact of this question 7373 views around the world You can reuse this answer Creative Commons License