How do you use the remainder theorem to find the remainder for each division (x^2+2x-15)div(x-3)(x2+2x15)÷(x3)?

1 Answer
Nov 26, 2016

The remainder =0=0

Explanation:

When we divide a polynomial f(x)f(x) by (x-a)(xa)

we get, f(x)=(x-a)q(x)+rf(x)=(xa)q(x)+r

If x=ax=a

f(a)=(a-a)q(x)+rf(a)=(aa)q(x)+r

So, f(a)=rf(a)=r

Here, f(x)=x^2+2x-15f(x)=x2+2x15 is divided by (x-3)(x3)

f(3)=3^2+2*3-15=9+6-15=0f(3)=32+2315=9+615=0

Remainder =0=0

f(x)f(x) is divisible by (x-3)(x3)

(x^2+2x-15)/(x-3)=(cancel(x-3)(x+5))/cancel(x-3)