How do you use the sum and difference formula to simplify 1−tan40tan20tan40+tan20?
1 Answer
Sep 10, 2016
Explanation:
The basic sum and difference formulae for
sin(α+β)=sinαcosβ+sinβcosα
sin(α−β)=sinαcosβ−sinβcosα
cos(α+β)=cosαcosβ−sinαsinβ
cos(α−β)=cosαcosβ+sinαsinβ
There are also sum and difference formulae for
tan(α+β)=sin(α+β)cos(α+β)
tan(α+β)=sinαcosβ+sinβcosαcosαcosβ−sinαsinβ
tan(α+β)=(sinαcosβ+sinβcosα)÷(cosαcosβ)(cosαcosβ−sinαsinβ)÷(cosαcosβ)
tan(α+β)=tanα+tanβ1−tanαtanβ
Similarly:
tan(α−β)=tanα−tanβ1+tanαtanβ
So notice that:
1−tan40tan20tan40+tan20=1tan(40+20)=1tan60=cot60