How do you use the sum and difference formula to simplify 1tan40tan20tan40+tan20?

1 Answer
Sep 10, 2016

1tan40tan20tan40+tan20=cot60

Explanation:

The basic sum and difference formulae for sin and cos are:

sin(α+β)=sinαcosβ+sinβcosα

sin(αβ)=sinαcosβsinβcosα

cos(α+β)=cosαcosβsinαsinβ

cos(αβ)=cosαcosβ+sinαsinβ

There are also sum and difference formulae for tan that we can derive from the above:

tan(α+β)=sin(α+β)cos(α+β)

tan(α+β)=sinαcosβ+sinβcosαcosαcosβsinαsinβ

tan(α+β)=(sinαcosβ+sinβcosα)÷(cosαcosβ)(cosαcosβsinαsinβ)÷(cosαcosβ)

tan(α+β)=tanα+tanβ1tanαtanβ

Similarly:

tan(αβ)=tanαtanβ1+tanαtanβ

So notice that:

1tan40tan20tan40+tan20=1tan(40+20)=1tan60=cot60