cos(pi/12)cos((5pi)/12)+cos(pi/12)sin((5pi)/12)cos(π12)cos(5π12)+cos(π12)sin(5π12)
= cos(pi/12)[cos((5pi)/12)+sin((5pi)/12)]cos(π12)[cos(5π12)+sin(5π12)]
Now as sin(pi/4)=cos(pi/4)=1/sqrt2sin(π4)=cos(π4)=1√2 above can be written as
sqrt2cos(pi/12)[sin(pi/4)cos((5pi)/12)+cos(pi/4)sin((5pi)/12)]√2cos(π12)[sin(π4)cos(5π12)+cos(π4)sin(5π12)]
using sin(A+B)=sinAcosB+cosAsinBsin(A+B)=sinAcosB+cosAsinB, this becomes
sqrt2cos(pi/12)[sin{(pi/4)+((5pi)/12)}√2cos(π12)[sin{(π4)+(5π12)}
= sqrt2cos(pi/12)sin((8pi)/12)=sqrt2sin((8pi)/12)cos(pi/12)√2cos(π12)sin(8π12)=√2sin(8π12)cos(π12)
Now using sinAcosB=1/2{sin(A-B)+sin(A+B)}sinAcosB=12{sin(A−B)+sin(A+B)}
sqrt2sin((8pi)/12)cos(pi/12)=sqrt2/2(sin((8pi)/12-pi/12)+sin((8pi)/12+pi/12))√2sin(8π12)cos(π12)=√22(sin(8π12−π12)+sin(8π12+π12))
= 1/sqrt2(sin((7pi)/12)+sin((9pi)/12))1√2(sin(7π12)+sin(9π12))
= 1/sqrt2(sin((3pi)/12+(4pi)/12)+sin((3pi)/4))1√2(sin(3π12+4π12)+sin(3π4))
= 1/sqrt2(sin((3pi)/12+(4pi)/12)+1/sqrt2)1√2(sin(3π12+4π12)+1√2)
= 1/sqrt2(sin((3pi)/12)cos((4pi)/12)+cos((3pi)/12)sin((4pi)/12))+1/21√2(sin(3π12)cos(4π12)+cos(3π12)sin(4π12))+12
= 1/sqrt2(sin(pi/4)cos(pi/3)+cos(pi/4)sin(pi/3))+1/21√2(sin(π4)cos(π3)+cos(π4)sin(π3))+12
= 1/sqrt2(1/sqrt2xx1/2+1/sqrt2xxsqrt3/2)+1/21√2(1√2×12+1√2×√32)+12
= (sqrt3+1)/4+1/2√3+14+12
= (3+sqrt3)/43+√34