How do you use the sum and difference formula to simplify cos(pi/12)cos((5pi)/12)+cos(pi/12)sin((5pi)/12)cos(π12)cos(5π12)+cos(π12)sin(5π12)?

1 Answer
Oct 20, 2016

cos(pi/12)cos((5pi)/12)+cos(pi/12)sin((5pi)/12)=(3+sqrt3)/4cos(π12)cos(5π12)+cos(π12)sin(5π12)=3+34

Explanation:

cos(pi/12)cos((5pi)/12)+cos(pi/12)sin((5pi)/12)cos(π12)cos(5π12)+cos(π12)sin(5π12)

= cos(pi/12)[cos((5pi)/12)+sin((5pi)/12)]cos(π12)[cos(5π12)+sin(5π12)]

Now as sin(pi/4)=cos(pi/4)=1/sqrt2sin(π4)=cos(π4)=12 above can be written as

sqrt2cos(pi/12)[sin(pi/4)cos((5pi)/12)+cos(pi/4)sin((5pi)/12)]2cos(π12)[sin(π4)cos(5π12)+cos(π4)sin(5π12)]

using sin(A+B)=sinAcosB+cosAsinBsin(A+B)=sinAcosB+cosAsinB, this becomes

sqrt2cos(pi/12)[sin{(pi/4)+((5pi)/12)}2cos(π12)[sin{(π4)+(5π12)}

= sqrt2cos(pi/12)sin((8pi)/12)=sqrt2sin((8pi)/12)cos(pi/12)2cos(π12)sin(8π12)=2sin(8π12)cos(π12)

Now using sinAcosB=1/2{sin(A-B)+sin(A+B)}sinAcosB=12{sin(AB)+sin(A+B)}

sqrt2sin((8pi)/12)cos(pi/12)=sqrt2/2(sin((8pi)/12-pi/12)+sin((8pi)/12+pi/12))2sin(8π12)cos(π12)=22(sin(8π12π12)+sin(8π12+π12))

= 1/sqrt2(sin((7pi)/12)+sin((9pi)/12))12(sin(7π12)+sin(9π12))

= 1/sqrt2(sin((3pi)/12+(4pi)/12)+sin((3pi)/4))12(sin(3π12+4π12)+sin(3π4))

= 1/sqrt2(sin((3pi)/12+(4pi)/12)+1/sqrt2)12(sin(3π12+4π12)+12)

= 1/sqrt2(sin((3pi)/12)cos((4pi)/12)+cos((3pi)/12)sin((4pi)/12))+1/212(sin(3π12)cos(4π12)+cos(3π12)sin(4π12))+12

= 1/sqrt2(sin(pi/4)cos(pi/3)+cos(pi/4)sin(pi/3))+1/212(sin(π4)cos(π3)+cos(π4)sin(π3))+12

= 1/sqrt2(1/sqrt2xx1/2+1/sqrt2xxsqrt3/2)+1/212(12×12+12×32)+12

= (sqrt3+1)/4+1/23+14+12

= (3+sqrt3)/43+34