How do you use the sum and difference formula to simplify #cos(pi/12)cos((5pi)/12)+cos(pi/12)sin((5pi)/12)#?

1 Answer
Oct 20, 2016

#cos(pi/12)cos((5pi)/12)+cos(pi/12)sin((5pi)/12)=(3+sqrt3)/4#

Explanation:

#cos(pi/12)cos((5pi)/12)+cos(pi/12)sin((5pi)/12)#

= #cos(pi/12)[cos((5pi)/12)+sin((5pi)/12)]#

Now as #sin(pi/4)=cos(pi/4)=1/sqrt2# above can be written as

#sqrt2cos(pi/12)[sin(pi/4)cos((5pi)/12)+cos(pi/4)sin((5pi)/12)]#

using #sin(A+B)=sinAcosB+cosAsinB#, this becomes

#sqrt2cos(pi/12)[sin{(pi/4)+((5pi)/12)}#

= #sqrt2cos(pi/12)sin((8pi)/12)=sqrt2sin((8pi)/12)cos(pi/12)#

Now using #sinAcosB=1/2{sin(A-B)+sin(A+B)}#

#sqrt2sin((8pi)/12)cos(pi/12)=sqrt2/2(sin((8pi)/12-pi/12)+sin((8pi)/12+pi/12))#

= #1/sqrt2(sin((7pi)/12)+sin((9pi)/12))#

= #1/sqrt2(sin((3pi)/12+(4pi)/12)+sin((3pi)/4))#

= #1/sqrt2(sin((3pi)/12+(4pi)/12)+1/sqrt2)#

= #1/sqrt2(sin((3pi)/12)cos((4pi)/12)+cos((3pi)/12)sin((4pi)/12))+1/2#

= #1/sqrt2(sin(pi/4)cos(pi/3)+cos(pi/4)sin(pi/3))+1/2#

= #1/sqrt2(1/sqrt2xx1/2+1/sqrt2xxsqrt3/2)+1/2#

= #(sqrt3+1)/4+1/2#

= #(3+sqrt3)/4#