How do you verify 1−cosx1+cosx=(cscx−cotx)2? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N. · Nghi N Nov 4, 2015 Verify 1−cosx1+cosx=(cscx−cotx)2 Explanation: Multiply both numerator and denominator of left side by (1 - cos x). (1−cosx1+cosx)(1−cosx1−cosx)= =(1−cosx)21−cos2x=(1−cosx)2sin2x= =(1−cosxsinx)2=(1sinx−(cosxsinx))2= =(cscx−cotx)2 Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 16232 views around the world You can reuse this answer Creative Commons License