How do you verify #(1+cotalpha)^2-2cotalpha=1/((1-cosalpha)(1+cosalpha))#?
2 Answers
Start by transforming all the terms into sine and cosine using the identity
#(1 + cosalpha/sinalpha)^2 - (2cosalpha)/sinalpha = 1/((1 - cosalpha)(1 + cosalpha))#
#1 + (2cosalpha)/sinalpha + cos^2alpha/sin^2alpha - (2cosalpha)/sinalpha = 1/(1- cos^2alpha)#
The
We use the identity
Identity Proved!
Hopefully this helps!
Proved