How do you verify 1-tan^2x=2-sec^2x?

1 Answer
Mar 5, 2018

Use the Pythagorean identity:

color(white)=>sin^2x+cos^2x=1

Then, divide all the terms by cos^2x to derive a new identity:

color(white)=>sin^2x/cos^2x+cos^2x/cos^2x=1/cos^2x

color(white)=>tan^2x+1=sec^2x

Now, here's the actual proof (starting with the right side):

RHS=2-color(red)(sec^2x)

color(white)(RHS)=2-(color(red)(1+tan^2x))

color(white)(RHS)=2-1-tan^2x

color(white)(RHS)=1-tan^2x

color(white)(RHS)=LHS