How do you verify #sec^2 x - cot^2 ( pi/2-x) =1#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub May 5, 2016 see below Explanation: Use Properties: #cos(A-B)=cosAcosB+sinAsinB# #sin(A-B)=sin A cos B-cos A sin B# Left Side:#=sec^2x-cot^2(pi/2 -x)# #=1/cos^2x - [(cos((pi/2)-x))/(sin((pi/2)-x))]^2# #=1/cos^2x - [(cos(pi/2)cosx+sin(pi/2)sinx)/(sin(pi/2)cosx-cos(pi/2)sinx)]^2# #=1/cos^2x - [(0*cosx+1*sinx)/(1*cosx-0*sinx)]^2# #=1/cos^2x - [(sinx)/(cosx)]^2# #=1/cos^2x - sin^2x/cos^2x# #=(1-sin^2x)/cos^2x# #=cos^2x/cos^2x# #=1# #=#Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 5057 views around the world You can reuse this answer Creative Commons License