How do you verify #sin x + cos x * cot x = csc x#?
1 Answer
Recall the following reciprocal, tangent, and Pythagorean identities:
#1# .#color(orange)cotx=1/tanx#
#2# .#color(blue)cscx=1/sinx#
#3# .#color(purple)tanx=sinx/cosx#
#4# .#color(brown)(sin^2x+cos^2x)=1#
Proving the Identity
#sinx+cosx*color(orange)cotx=color(blue)cscx#
Left side:
#sinx+cosx*1/color(purple)tanx#
#=sinx+cosx*1/(sinx/cosx)#
#=sinx+cosx*(1-:sinx/cosx)#
#=sinx+cosx*(1/1*cosx/sinx)#
#=sinx+cosx*(cosx/sinx)#
#=sinx+cos^2x/sinx#
#=(sinx(sinx)+cos^2x)/sinx#
#=color(brown)((sin^2x+cos^2x))/sinx#
#=1/sinx#
#=color(green)(cscx)#