How do you verify #sintheta+costheta=(2sin^2theta-1)/(sintheta-costheta)#?

1 Answer
Nov 12, 2016

see below

Explanation:

#sin theta +cos theta=(2sin^2theta-1)/(sin theta-costheta)#

Left Side:#=sin theta +cos theta#

#=(sin theta +cos theta)/1*(sintheta-costheta)/(sintheta-costheta)#

#=(sin^2theta-cos^2theta)/(sin theta -cos theta)#

#=(sin^2theta-(1-sin^2theta))/(sin theta -cos theta)#

#=(sin^2theta-1+sin^2theta)/(sin theta -cos theta)#

#=(sin^2theta+sin^2theta-1)/(sin theta -cos theta)#

#=(2sin^2theta-1)/(sin theta -cos theta)#

#:.=#Right Side