How do you verify # tan^2(a) - sin^2(a)=tan^2(a)sin^2(a)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Apr 17, 2016 See below Explanation: Left Side #=sin^2a/cos^2a - sin^2a# #=(sin^2a-sin^2acos^2a)/cos^2a# #=(sin ^2a(1-cos^2a))/cos ^2a# #=(sin ^2a xx sin^2a)/cos^2a# #=sin^2a/cos^2a xx sin^2a# #=tan^2a sin^2a# #=#Right side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 7308 views around the world You can reuse this answer Creative Commons License