How do you verify #tan(x) / (1-cos(x))= csc(x)(1+sec(x))#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Apr 17, 2016 See below Explanation: Left Side #=(tanx/(1-cosx)) xx (1+cosx)/(1+cosx)# #=(tanx (1+cosx))/((1-cosx)(1+cosx))# #=(tanx (1+cosx))/(1-cos^2x)# =#(tanx (1+cosx))/sin^2x# =#(((sinx/cosx) (1+cosx))/sin^2x)# =#((sinx/cosx) (1+cosx))(1/sin^2x)# =#1/sinx xx (1+cosx)/cosx# =#cscx (1/cosx +cosx/cosx)# =#cscx(secx+1)# =#cscx(1+secx)# =Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 7686 views around the world You can reuse this answer Creative Commons License