How do you verify #(tanx) /(1-cotx) + (cotx) /(1-tanx) = 1 +secx cscx#?

2 Answers
Nov 26, 2015

Carefully.

Explanation:

I find that its easier to convert directly to sine and cosine. I recognize the trig identities better.

#(sinX/cosX)/(1-cosX/sinX) + (cosX/sinX)/(1-sinX/cosX)#

There are too many fractions. Turn the #1#'s into #sinX"/"sinX# and #cosX"/"cosX#, then combine the denominators into fractions over #sinX# and #cosX#.

#(sinX/cosX)/((sinX-cosX)/sinX) + (cosX/sinX)/((cosX-sinX)/cosX)#

Now we can get rid of these fractions of fractions by flipping the denominators and multiplying them by the numerators.

#sin^2X/(cosX(sinX-cosX)) + cos^2X/(sinX(cosX-sinX))#

Cross multiply the denominators to get a common denominator.

#(sin^3X(cosX-sinX) + cos^3(sinX-cosX))/(sinXcosX(sinX-cosX)(cosX-sinX))#

Multiply through the parenthesis.

#(sin^3XcosX-sin^4X - cos^4X+sinXcos^3X)/(sinXcosX(-sin^2X+2sinXcosX - cos^2X))#

Pull a factor of #sinXcosX# out of two of the terms in the numerator. There is also a #-(sin^2X+cos^2X)# in the denominator, which by the Pythagorean theorem is equal to #-1#.

#((sin^2X + cos^2X)sinXcosX -sin^4X - cos^4X)/(sinXcosX(2sinXcosX-1))#

We can use the Pythagorean theorem again on the top. Also, pull out a #-1# from the #""^4# terms in the numerator.

#(sinXcosX -(sin^4X + cos^4X))/(sinXcosX(2sinXcosX-1))#

Split the #sin^4X# term into two #sin^2X# terms. Then we can use the Pythagorean theorem, #sin^2X = 1-cos^2X# to replace one of the #sin^2# terms. Do a similar action with the #cosX^4# term.

#(sinXcosX -(sin^2Xsin^2X+cos^2Xcos^2X))/(sinXcosX(2sinXcosX-1))#

#(sinXcosX -(sin^2X(1-cos^2X)+cos^2X(1-sin^2X)))/(sinXcosX(2sinXcosX-1))#

Multiply through the terms in the top parenthesis.

#(sinXcosX -(sin^2X-2sin^2Xcos^2X +cos^2X))/(sinXcosX(2sinXcosX-1))#

Once again Pythagorean theorem out the #sin^2X# and #cos^2X# terms.

#(sinXcosX -(1-2sin^2Xcos^2X))/(sinXcosX(2sinXcosX-1))#

Multiply the #-1# through the parenthesis in the numerator.

#( sinXcosX+2sin^2Xcos^2X-1)/(sinXcosX(2sinXcosX-1))#

Pull out a factor of #sinXcosX# from two of the terms in the numerator.

#( sinXcosX(1+2sinXcosX)-1)/(sinXcosX(2sinXcosX-1))#

Adding and subtracting a #1# inside the parenthesis is the same as adding #0#.

#( sinXcosX(1+2sinXcosX+(1-1))-1)/(sinXcosX(2sinXcosX-1))#

Combine the two #+1# terms in the parenthesis.

#( sinXcosX(2sinXcosX-1 +2)-1)/(sinXcosX(2sinXcosX-1))#

Now pull the #2# out. Remember to multiply by #sinXcosX#.

#( sinXcosX(2sinXcosX-1) + 2sinXcosX-1)/(sinXcosX(2sinXcosX-1))#

Finally we have a term in the numerator that is the same as the denominator. Split the addition terms in the numerator to get;

#(sinXcosX(2sinXcosX-1))/(sinXcosX(2sinXcosX-1)) + (2sinXcosX-1)/(sinXcosX(2sinXcosX-1))#

The first term simplifies to #1# and in the second term the #(2sinXcosX-1)#s cancel out.

#1+1/(sinXcosX)#

Now convert to #secX#and #cscX#

#1+secXcscX#

Sep 22, 2016

#LHS=tanx/(1 - cotx) + cotx/(1 - tanx) #

#=tan^2x/(tanx(1 - cotx)) + cotx/(1 - tanx) #

#=cotx/(1 - tanx) +tan^2x/(tanx- tanxcotx)#

#=cotx/(1 - tanx) -tan^2x/(1- tanx)#

#=(1/tanx-tan^2x)/(1 - tanx)#

#=(1-tan^3x)/(tanx(1 - tanx))#

#=(cancel((1-tanx))(1+tanx+tan^2x))/(tanxcancel((1 - tanx))#

#=(tanx+sec^2x)/(tanx#

#=tanx/tanx+sec^2x/tanx#

#=1+secx*secx *(cosx/sinx)#

#=1+secx*(1/sinx)#

#=1+secx*cscx=RHS#