How do you verify the identify sinthetatantheta+costheta=secthetasinθtanθ+cosθ=secθ?
3 Answers
See the proof below
Explanation:
We need
Therefore,
Apply the identities
Explanation:
Apply the identity
Apply the Pythagorean theorem
By the definition of secants
Explanation:
"using the "color(blue)"trigonometric identities"using the trigonometric identities
•color(white)(x)tantheta=sintheta/costheta" and "sectheta=1/costheta"∙xtanθ=sinθcosθ and secθ=1cosθ
•color(white)(x)sin^2theta+cos^2theta=1∙xsin2θ+cos2θ=1
"Consider the left side"Consider the left side
rArrsinthetatantheta+costheta⇒sinθtanθ+cosθ
=sinthetaxxsintheta/costheta+costheta=sinθ×sinθcosθ+cosθ
=sin^2theta/costheta+cos^2theta/costhetalarr"common denominator "costheta=sin2θcosθ+cos2θcosθ←common denominator cosθ
=(sin^2theta+cos^2theta)/costheta=sin2θ+cos2θcosθ
=1/costheta=sectheta=" right side "rArr" verified"=1cosθ=secθ= right side ⇒ verified