How do you verify the identify sinthetatantheta+costheta=secthetasinθtanθ+cosθ=secθ?

3 Answers
Mar 9, 2018

See the proof below

Explanation:

We need

tantheta=sintheta/costhetatanθ=sinθcosθ

sin^2theta+cos^2theta=1sin2θ+cos2θ=1

sectheta=1/costhetasecθ=1cosθ

Therefore,

LHS=sinthetatantheta+costhetaLHS=sinθtanθ+cosθ

=sintheta*sintheta/costheta+costheta=sinθsinθcosθ+cosθ

=(sin^2theta+cos^2theta)/(costheta)=sin2θ+cos2θcosθ

=1/costheta=1cosθ

=sectheta=secθ

=RHS=RHS

QEDQED

Mar 9, 2018

Apply the identities tan(theta)=(sin theta)/(cos theta)tan(θ)=sinθcosθ and sec theta=1/(cos theta)secθ=1cosθ along with the Pythagorean theorem.

Explanation:

Apply the identity tan(theta)=(sin theta)/(cos theta)tan(θ)=sinθcosθ:
L.H.S.=sin theta*sin theta/(cos theta)+cos thetaL.H.S.=sinθsinθcosθ+cosθ
=sin^2 theta/(cos theta)+cos theta=sin2θcosθ+cosθ
=(sin^2 theta+cos^2 theta)/(cos theta)=sin2θ+cos2θcosθ

Apply the Pythagorean theorem sin^2 theta+cos^2 theta=1sin2θ+cos2θ=1
=(sin^2 theta+cos^2 theta)/(cos theta)=sin2θ+cos2θcosθ
=1/(cos theta)=1cosθ

By the definition of secants 1/(cos theta)=sec theta1cosθ=secθ:
=sec theta=secθ
=R.H.S=R.H.S

Mar 9, 2018

"see explanation"see explanation

Explanation:

"using the "color(blue)"trigonometric identities"using the trigonometric identities

•color(white)(x)tantheta=sintheta/costheta" and "sectheta=1/costheta"xtanθ=sinθcosθ and secθ=1cosθ

•color(white)(x)sin^2theta+cos^2theta=1xsin2θ+cos2θ=1

"Consider the left side"Consider the left side

rArrsinthetatantheta+costhetasinθtanθ+cosθ

=sinthetaxxsintheta/costheta+costheta=sinθ×sinθcosθ+cosθ

=sin^2theta/costheta+cos^2theta/costhetalarr"common denominator "costheta=sin2θcosθ+cos2θcosθcommon denominator cosθ

=(sin^2theta+cos^2theta)/costheta=sin2θ+cos2θcosθ

=1/costheta=sectheta=" right side "rArr" verified"=1cosθ=secθ= right side verified