How do you verify the identify #tantheta+cottheta=secthetacsctheta#?

1 Answer
Sep 28, 2016

see explanation.

Explanation:

We attempt to show by manipulation that the left side has the same form as the right side.

Using the #color(blue)"trigonometric identities"#

#color(orange)"Reminder"#

#color(red)(bar(ul(|color(white)(a/a)color(black)(tantheta=(sintheta)/(costheta)" and " cottheta=(costheta)/(sintheta))color(white)(a/a)|)))#

left side #=tantheta+cottheta#

#=(sintheta)/(costheta)+(costheta)/sintheta#

To combine these fractions we require a common denominator of #costhetasintheta.#

#rArr(sintheta)/(costheta)xx(sintheta)/(sintheta)+(costheta)/(sintheta)xx(costheta)/(costheta)#

#=(sin^2theta+cos^2theta)/(costhetasintheta)#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2theta+cos^2theta=1)color(white)(a/a)|)))#

#color(red)(bar(ul(|color(white)(a/a)color(black)(sectheta=1/(costheta)" and " csctheta=1/(sintheta))color(white)(a/a)|)))#

#rArr(sin^2theta+cos^2theta)/(costhetasintheta)=1/(costheta)xx1/(sintheta)#

#=secthetacsctheta=" right side"rArr" verified"#