How do you verify the identity #costheta/(1+sintheta)+tantheta=sectheta#?

1 Answer
Oct 3, 2016

see below

Explanation:

#cos theta/(1+sin theta) + tan theta = sec theta#

Left Side #=cos theta/(1+sin theta) + tan theta#

#=(cos theta/(1+sin theta))*(1-sintheta)/(1-sin theta) + sin theta/cos theta#

#=(costheta(1-sintheta))/(1-sin^2theta)+sin theta/cos theta#

#=(costheta(1-sintheta))/cos^2theta +sintheta/costheta#

#=(1-sintheta)/cos theta +sintheta/costheta#

#=(1-sintheta+sintheta)/cos theta#

#=1/cos theta#

#=sec theta#

#=#Right Side