How do you verify the identity costheta/(1+sintheta)+tantheta=secthetacosθ1+sinθ+tanθ=secθ?

1 Answer
Oct 3, 2016

see below

Explanation:

cos theta/(1+sin theta) + tan theta = sec thetacosθ1+sinθ+tanθ=secθ

Left Side =cos theta/(1+sin theta) + tan theta=cosθ1+sinθ+tanθ

=(cos theta/(1+sin theta))*(1-sintheta)/(1-sin theta) + sin theta/cos theta=(cosθ1+sinθ)1sinθ1sinθ+sinθcosθ

=(costheta(1-sintheta))/(1-sin^2theta)+sin theta/cos theta=cosθ(1sinθ)1sin2θ+sinθcosθ

=(costheta(1-sintheta))/cos^2theta +sintheta/costheta=cosθ(1sinθ)cos2θ+sinθcosθ

=(1-sintheta)/cos theta +sintheta/costheta=1sinθcosθ+sinθcosθ

=(1-sintheta+sintheta)/cos theta=1sinθ+sinθcosθ

=1/cos theta=1cosθ

=sec theta=secθ

==Right Side