How do you verify the identity (costhetacottheta)/(1-sintheta)-1=csctheta?

1 Answer
Jan 17, 2017

See proof below

Explanation:

We need

cottheta=costheta/sintheta

csctheta=1/sintheta

cos^2theta+sin^2theta=1

a^2-b^2=(a+b)(a-b)

Therefore,

LHS=(costhetacottheta)/(1-sintheta)-1

=(costheta*costheta/sintheta)/(1-sintheta)-1

=cos^2theta/(sintheta(1-sintheta))-1

=(1-sin^2theta)/(sintheta(1-sintheta))-1

=((1+sintheta)cancel(1-sintheta))/(sinthetacancel(1-sintheta))-1

=(1+sintheta)/sintheta-1

=(1+sintheta-sintheta)/sintheta

=1/sintheta

=csctheta

=RHS

QED