How do you verify the identity #(cot^2x-1)/(1+cot^2x)=1-2sin^2x#?

1 Answer
Sep 5, 2016

see explanation.

Explanation:

We attempt to express the left side in the same form as the right side.
Let's begin by rewriting #cot^2x#

#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(cotx=(cosx)/(sinx))color(white)(a/a)|)))#

#rArr((cos^2x)/(sin^2x)-1)/(1+cos^2x/(sin^2x)#

now multiply all terms on numerator and denominator by #sin^2x#

#rArr(cos^2x-sin^2x)/(sin^2x+cos^2x) .......(A)#

To simplify we require the #color(blue)"trigonometric identities"#

#color(orange)"Reminder"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(cos2x=cos^2x-sin^2x=1-2sin^2x)color(white)(a/a)|)))#

and #color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|)))#

Substituting these into (A) gives.

#cos2x=1-2sin^2x#

Thus left side = right side #rArr" verified"#