How do you verify the identity: #(cot(t)-tan(t))/(sin(t)cos(t)) = csc^2 (t) - sec^2 (t)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Nghi N. Jun 9, 2015 Verify the identity: #(cot t - tan t)/(sin t.cos t)# Explanation: #((cos t/sin t) - (sin t/cos t))/(sin t.cos t) = # =#(cos^2 t - sin^2 t)/(sin^2 t.cos^2 t)# =# 1/(sin^2 t) - 1/(cos^2 t) =# #= csc^2 t - sec^2 t# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 6062 views around the world You can reuse this answer Creative Commons License