How do you verify the identity #csc^4theta-cot^4theta=2cot^2theta+1#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Oct 7, 2016 see below Explanation: #csc^4 theta-cot^4 theta = 2 cot^2 theta + 1# Left Side : #=csc^4 theta-cot^4 theta# #=(csc^2 theta-cot^2theta)(csc^2 theta+cot^2 theta)# #=1* (csc^2 theta+cot^2 theta)# #=csc^2 theta+cot^2 theta# #=1+cot^2 theta + cot^2 theta# #=1+2 cot ^2 theta# #=2 cot ^2 theta+1# #:.=# Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 4165 views around the world You can reuse this answer Creative Commons License