We have: #(csc(theta) - cot(theta)) (csc(theta) + cot(theta))#
Let's expand the parentheses:
#= (csc(theta)) (csc(theta)) + (csc(theta)) (cot(theta)) + ( - cot(theta) (csc(theta)) + (- cot(theta)) (cot(theta))#
#= csc^(2)(theta) + csc(theta) cot (theta) - csc(theta) cot(theta) - cot^(2)(theta)#
#csc^(2)(theta) - cot^(2)(theta)#
Then, let's apply two standard trigonometric identities; #csc(theta) = (1) / (sin(theta))# and #cot(theta) = (cos(theta)) / (sin(theta))#:
#= ((1) / (sin(theta)))^(2) - ((cos(theta)) / (sin(theta)))^(2)#
#= (1) / (sin^(2)(theta)) - (cos^(2)(theta)) / (sin^(2)(theta))#
#= (1 - cos^(2)(theta)) / (sin^(2)(theta))#
One of the Pythagorean identities is #cos^(2)(theta) + sin^(2)(theta) = 1#.
We can rearrange this to get:
#=> sin^(2)(theta) = 1 - cos^(2)(theta)#
Let's apply this rearranged identity to our proof:
#= (sin^(2)(theta)) / (sin^(2)(theta))#
#=1# (Q.E.D.)