How do you write an algebraic expression that is equivalent to #sec(arcsin(x-1))#?

2 Answers
Jan 9, 2017

sec (x - 1)

Explanation:

#arcsin (x - 1) -> arc (x - 1)#
The equivalent expression is
#sec (x - 1)#, or #1/(cos (x - 1))#

Jan 9, 2017

#1/sqrt(2x-x^2), (xne0,2).#

Explanation:

Let #arc sin(x-1)=theta#

#:. sintheta=(x-1)#

Now, Reqd. Exp. #=sec(arc sin(x-1)#

#=sectheta#

But, #sintheta=(x-1) rArr costheta=sqrt{1-sin^2theta}#

#=sqrt{1-(x-1)^2}#

#=sqrt(2x-x^2)#

#:. sectheta=1/sqrt(2x-x^2)#

Hence, the reqd. Exp. #=1/sqrt(2x-x^2), (xne0,2).#