How do you write an algebraic expression that is equivalent to sec(arctan3x)?

1 Answer
Apr 28, 2017

sec(tan1(3x))=1+9x2

Explanation:

Given:

sec(tan1(3x))=

Use the square root of the square:

sec2(tan1(3x))

Use the identity sec2(θ)=1+tan2(θ):

1+tan2(tan1(3x))

Use the property tan(tan1(θ))=θ

1+(3x)2

Simplify a bit:

1+9x2