How do you write an equation for the hyperbola with asymptote y=+-(4x)/3y=±4x3, contains (3sqrt(2,)4)(32,4)?

1 Answer
Jan 25, 2018

x^2/9-y^2/16=1x29y216=1.

Explanation:

Recall that, for the Hyperbola S : x^2/a^2-y^2/b^2=1S:x2a2y2b2=1, the

asymptotes are given by, y=+-b/a*x;" where, "a,b gt 0y=±bax; where, a,b>0.

In our Case, the asymptotes are, y=+-4/3*xy=±43x.

:. b/a=4/3...........................................................................(1).

Next, (3sqrt2,4) in S rArr (3sqrt2)^2/a^2-4^2/b^2=1.

:. 18/a^2-16/b^2=1.

Multiplying by b^2, we get, 18*b^2/a^2-16=b^2.

By (1), then, 18*(4/3)^2-16=b^2, i.e., b^2=16.

:. b=4 (because, b >0), and, (1) rArr a=3, or, a^2=9.

With a^2=9, and b^2=16, the reqd. eqn. of the Hyperbola is,

x^2/9-y^2/16=1.