How do you write an equation of the cosine function with amplitude of 2, period of 2π/3, phase shift of π/6, and a vertical shift of 1?

1 Answer
Sep 17, 2016

y=2cos(3x-pi/2)+1

Explanation:

The general equation of cosine is y=Acos(Bx-C)+D,
where
A= the amplitude

(2pi)/absB= the period

C/B= the phase shift

D= the vertical shift

In this example, the amplitude is given as 2, the period (2pi)/3, the phase shift is pi/6, and vertical shift is 1.

A=2

(2pi)/3=(2pi)/absB so B=3

pi/6=C/B=C/3

pi/6=C/3 so C=pi/2

D=1

Giving us the equation

y=2cos(3x-pi/2)+1