How do you write in simplest radical form the coordinates of point A if A is on the terminal side of angle in standard position whose degree measure is thetaθ: OA=25, theta=210^circθ=210?

1 Answer
Mar 4, 2018

Coordinates of color(green)(A = (-(25sqrt3)/2, -25/2)A=(2532,252)

Explanation:

vec(OA) = 25, theta = 210^@OA=25,θ=210

To find x & y coordinates of point A.

enter image source here
Point A is in third quadrant as thetaθ is between 180^@180 & 270^@270

Hence, both x , y coordinates are negative.

A_x = bar(OA) cos theta = 25 * cos 210 = 25 * (- cos 30)Ax=¯¯¯¯¯¯OAcosθ=25cos210=25(cos30)

as cos(180 + 30) = - cos 30cos(180+30)=cos30

A_ x = -(25 * sqrt3) / 2Ax=2532

A_y = bar(OA) sin theta = 25 * sin 210 = 25 * (- sin 30)Ay=¯¯¯¯¯¯OAsinθ=25sin210=25(sin30)

as sin(180 + 30) = - sin 30sin(180+30)=sin30

A_y = -(25 * (1/2)) = 25/2Ay=(25(12))=252

Coordinates of color(green)(A = (-(25sqrt3)/2, -25/2)A=(2532,252)