Given: r = 2sec(theta+pi/4)r=2sec(θ+π4)
Multiply both sides by cos(theta+pi/4)cos(θ+π4):
rcos(theta+pi/4) = 2rcos(θ+π4)=2
Use the identity cos(a+b)=cos(a)cos(b)-sin(a)sin(b)cos(a+b)=cos(a)cos(b)−sin(a)sin(b) to substitute cos(theta)cos(pi/4) - sin(theta)sin(pi/4)cos(θ)cos(π4)−sin(θ)sin(π4) for cos(theta+pi/4)cos(θ+π4):
r(cos(pi/4)cos(theta) - sin(pi/4)sin(theta)) = 2r(cos(π4)cos(θ)−sin(π4)sin(θ))=2
The sine and cosine are both sqrt(2)/2√22 at pi/4π4
r(sqrt(2)/2cos(theta) - sqrt(2)/2sin(theta)) = 2r(√22cos(θ)−√22sin(θ))=2
Use the distributive property:
sqrt(2)/2rcos(theta) - sqrt(2)/2rsin(theta) = 2√22rcos(θ)−√22rsin(θ)=2
Multiply both sides by sqrt(2)√2
rcos(theta) - rsin(theta) = 2sqrt2rcos(θ)−rsin(θ)=2√2
Substitute x for rcos(theta)rcos(θ) and y for rsin(theta)rsin(θ)
x - y = 2sqrt2x−y=2√2