How do you write r=2sec(theta+pi/4)r=2sec(θ+π4) in rectangular form?

1 Answer
Jan 25, 2017

Multiply both sides by the cos(theta+pi/4)cos(θ+π4)
Use the identity cos(a+b)=cos(a)cos(b)-sin(a)sin(b)cos(a+b)=cos(a)cos(b)sin(a)sin(b)
Substitute x for rcos(theta)rcos(θ) y for rsin(theta)rsin(θ)

Explanation:

Given: r = 2sec(theta+pi/4)r=2sec(θ+π4)

Multiply both sides by cos(theta+pi/4)cos(θ+π4):

rcos(theta+pi/4) = 2rcos(θ+π4)=2

Use the identity cos(a+b)=cos(a)cos(b)-sin(a)sin(b)cos(a+b)=cos(a)cos(b)sin(a)sin(b) to substitute cos(theta)cos(pi/4) - sin(theta)sin(pi/4)cos(θ)cos(π4)sin(θ)sin(π4) for cos(theta+pi/4)cos(θ+π4):

r(cos(pi/4)cos(theta) - sin(pi/4)sin(theta)) = 2r(cos(π4)cos(θ)sin(π4)sin(θ))=2

The sine and cosine are both sqrt(2)/222 at pi/4π4

r(sqrt(2)/2cos(theta) - sqrt(2)/2sin(theta)) = 2r(22cos(θ)22sin(θ))=2

Use the distributive property:

sqrt(2)/2rcos(theta) - sqrt(2)/2rsin(theta) = 222rcos(θ)22rsin(θ)=2

Multiply both sides by sqrt(2)2

rcos(theta) - rsin(theta) = 2sqrt2rcos(θ)rsin(θ)=22

Substitute x for rcos(theta)rcos(θ) and y for rsin(theta)rsin(θ)

x - y = 2sqrt2xy=22