How do you write the equation 4=rcos(theta+pi/4)4=rcos(θ+π4) in rectangular form?

1 Answer
Nov 19, 2016

The equation is x-y=4sqrt2xy=42

Explanation:

We use,

cos(a+b)=cosacosb-sinasinbcos(a+b)=cosacosbsinasinb

cos(theta+pi/4)=costhetacos(pi/4)-sinthetasin(pi/4)cos(θ+π4)=cosθcos(π4)sinθsin(π4)

cos(pi/4)=sin(pi/4)=sqrt2/2cos(π4)=sin(π4)=22

The conversion from polar coordnates to cartesian coordinates is made with the following equations

x=rcosthetax=rcosθ

and y=rsinthetay=rsinθ

We can transform the above equation,

4=rcos(theta+pi/4)=rcosthetacos(pi/4)-rsinthetasin(pi/4)4=rcos(θ+π4)=rcosθcos(π4)rsinθsin(π4)

4=xsqrt2/2-ysqrt2/24=x22y22

4sqrt2=x-y42=xy