How do you write the equation for the inverse of the function #y=arcsin(3x)#?

1 Answer
Jul 13, 2017

Given: #y=arcsin(3x)#

Change to #f(x)# notation:

#f(x)=arcsin(3x)#

Substitute #f^-1(x)# for every x:

#f(f^-1(x))=arcsin(3f^-1(x))#

The left side becomes x by definition:

#x=arcsin(3f^-1(x))#

Use the sine function on both sides:

#sin(x)=sin(arcsin(3f^-1(x)))#

Because the sine and the arcsine are inverses, they cancel:

#sin(x)=3f^-1(x)#

Divide the equation by 3 and flip:

#f^-1(x)= sin(x)/3#

Before we can declare this as an inverse, we must test that #f(f^-1(x)) = x# and #f^-1(f(x)) = x#

#f(f^-1(x)) = arcsin(3(sin(x)/3))#

#f(f^-1(x)) = arcsin(sin(x))#

#f(f^-1(x)) = x#

#f^-1(f(x)) = sin(arcsin(3x))/3#

#f^-1(f(x)) = (3x)/3#

#f^-1(f(x)) = x#

Verified #f^-1(x)= sin(x)/3#