How do you write the equation r=11sec(theta+(7pi)/6)r=11sec(θ+7π6) in rectangular form?

1 Answer
Mar 20, 2018

Given: r=11sec(theta+(7pi)/6)r=11sec(θ+7π6)

Because we know that cos(A)sec(A) = 1cos(A)sec(A)=1, we shall multiply both sides by cos(theta+(7pi)/6)cos(θ+7π6):

rcos(theta+(7pi)/6)=11rcos(θ+7π6)=11

Use the identity cos(A+B) = cos(A)cos(B)-sin(A)sin(B)cos(A+B)=cos(A)cos(B)sin(A)sin(B)

where A = theta and B = (7pi)/6A=θandB=7π6

r(cos(theta)cos((7pi)/6)-sin(theta)sin((7pi)/6))=11r(cos(θ)cos(7π6)sin(θ)sin(7π6))=11

Distribute the factor, r:

rcos(theta)cos((7pi)/6)-rsin(theta)sin((7pi)/6)=11rcos(θ)cos(7π6)rsin(θ)sin(7π6)=11

Substitute rcos(theta) = x and rsin(theta)=yrcos(θ)=xandrsin(θ)=y

cos((7pi)/6)x-sin((7pi)/6)y=11cos(7π6)xsin(7π6)y=11

Calculate the constants:

-sqrt3/2x+1/2y=1132x+12y=11

Multiply both sides by 2:

-sqrt3x+y=223x+y=22

Add sqrt3x3x to both sides:

y=sqrt3x+22y=3x+22