How do you write the equation r=5sec(theta-60^circ)r=5sec(θ60) in rectangular form?

1 Answer
Jan 15, 2017

x+sqrt3 y-10=0.x+3y10=0.

Explanation:

graph{((x-2.5)^2+(y-2.5sqrt3)^2-.01)(x+sqrt3y-10)(y-1.73x)=0x^2 [-10, 10, -5, 5]} If O is the pole r =0, A is (5, 60^o)(5,60o) then ,

using projection OA = 5 = OP cos angleAOP=rcos(theta-60^o)OA=5=OPcosAOP=rcos(θ60o).

P(r, theta)P(r,θ) moves such that angleOPAOPA is 90^o90o.

The conversion formula is r(cos theta, sin theta)=(x, y)r(cosθ,sinθ)=(x,y).

Now,

5=rcos(theta-60^o)5=rcos(θ60o)

= (rcostheta)cos 60^o+(rsin theta)sin 60^o=(rcosθ)cos60(rsinθ)sin60o

=1/2x+sqrt3/2 y=12x+32y

This makes intercept 10 on the x-axis.

Look at the dot for the reference point A (5, 60^o)A(5,60o), in the graph