How do you write the equation using polar coordinates given (x-2)^2+y^2=4(x2)2+y2=4?

1 Answer
Dec 1, 2016

This is the equation of a circle with center in (2,0) and radius 2 and becomes:

rho^2 -4rho cos theta =0ρ24ρcosθ=0

Explanation:

Substitute the expression of xx and yy in terms of polar coordinates:

x=rho cos thetax=ρcosθ
y=rho sin thetay=ρsinθ

and you have:

(rho cos theta - 2)^2+rho^2 sin^2 theta = 4(ρcosθ2)2+ρ2sin2θ=4

rho^2cos^2theta -4rho cos theta +cancel 4 + rho^2 sin^2 theta = cancel 4

rho^2(cos^2theta +sin^2 theta) -4rho cos theta =0

rho^2 -4rho cos theta =0