How do you write the polar form of the equation of the line that passes through the points (3,pi/4)(3,π4) and (2,(7pi)/6)(2,7π6)?

1 Answer
May 5, 2018

(2 r sin theta - 3 sqrt 2)(sqrt{3} + 3 sqrt 2) = (2 r cos theta- 3 sqrt 2)(1 + 3 sqrt 2) (2rsinθ32)(3+32)=(2rcosθ32)(1+32)

Explanation:

I have to keep pointing out that most trig only uses two triangles. This is another 45/45/90 and 30/60/90 problem.

A line through rectangular coordinates (x_1, y_1)(x1,y1) and (x_2,y_2)(x2,y2) looks like

(y - y_1)(x_2 - x_1) = (x - x_1)(y_2 - y_1)(yy1)(x2x1)=(xx1)(y2y1)

For polar coordinates

x = r cos thetax=rcosθ

y = r sin thetay=rsinθ

x_1 = 3 cos(pi/4) = 3/2 sqrt 2x1=3cos(π4)=322

y_1 = 3 sin( pi/4) = 3/2 sqrt 2y1=3sin(π4)=322

x_2 = 2 cos ({7pi}/6) = -sqrt{3}/2 x2=2cos(7π6)=32

y_2 = 2 sin({7 pi}/6)=-1/2y2=2sin(7π6)=12

( r sin theta - 3/2 sqrt 2)(-sqrt{3}/2 - 3/2 sqrt 2) = (r cos theta- 3/2 sqrt 2)(-1/2 - 3/2 sqrt 2)(rsinθ322)(32322)=(rcosθ322)(12322)

We could stop here but let's clear the fractions and a minus sign.

(2 r sin theta - 3 sqrt 2)(sqrt{3} + 3 sqrt 2) = (2 r cos theta- 3 sqrt 2)(1 + 3 sqrt 2) (2rsinθ32)(3+32)=(2rcosθ32)(1+32)

Check: Alpha

enter image source here