How do you write the trigonometric expression cos(arccosx+arcsinx) as an algebraic expression?

2 Answers
Jan 20, 2018

The answer is =0

Explanation:

Let y=arccosx, , cosy=x

Let z=arcsinx, , sinz=x

Therefore,

cos(arccosx+arcsinx)=cos(y+z)

=cosycoszsinysinz

=x1x2x1x2

=0

Jan 20, 2018

cos(arccosx+arcsinx)=0

|x|1

  • for all x that is in the interval 1x1

Explanation:

The first thing we need to consider is our additional formulae for trig:

cos(A+B)=cosAcosBsinAsinB

So for this problem we see that A=arccosx and B=arcsinx

cos(arccosx+arcsinx)=

cos(arccosx)cos(arcsinx)sin(arccosx)sin(arcsinx)

We know:

cos(arccosx)=x and sin(arcsinx)=x

Now to find cos(arcsinx) and sin(arccosx):

let θ1=arcsinx

sinθ1=x

Use cos2x+sin21

cosθ1=1sin2θ1=1x2

cos(θ1)=cos(arcsinx)=1x2

let θ2=arccosx

cosθ2=x

sinθ2=1x2

sin(arccosx)=1x2

Hence this:

cos(arccosx)cos(arcsinx)sin(arccosx)sin(arcsinx)

Becomes:

x1x2x1x2=0

Note: This only holds for |x|1

As that is values of x that arcsinx and arccosx are valid for...