How do you write #y = (4x + 1)(2x − 3)# in standard form? Algebra Polynomials and Factoring Polynomials in Standard Form 1 Answer bp Sep 17, 2015 #y= 8(x-5/8)^2 -49/8# Explanation: It is #y= 8x^2-10x-3# #=8(x^2 -(5x)/4)-3# #= 8 (x^2 -(5x)/4 +25/64-25/64) -3# #= 8 (x-5/8)^2 -3-25/8# #= 8(x-5/8)^2 -49/8# Answer link Related questions What is a Polynomial? How do you rewrite a polynomial in standard form? How do you determine the degree of a polynomial? What is a coefficient of a term? Is #x^2+3x^{\frac{1}{2}}# a polynomial? How do you express #-16+5f^8-7f^3# in standard form? What is the degree of #16x^2y^3-3xy^5-2x^3y^2+2xy-7x^2y^3+2x^3y^2#? What is the degree of the polynomial #x^4-3x^3y^2+8x-12#? What is the difference between a monomial, binomial and polynomial? How do you write #y = 2/3x + 5# in standard form? See all questions in Polynomials in Standard Form Impact of this question 1278 views around the world You can reuse this answer Creative Commons License