How length of /AH/ = ?

enter image source here

1 Answer
Nov 8, 2017

E) #8sqrt2# cm

Explanation:

enter image source here
For an isosceles triangle, the area will be maximum when it is a right triangle, #=> angleBAC=90^@#
As shown in the figure, #ABCD# is a square, #AD and BC# are the diagonals,
Let #AB=AC=x, => AD=BC=sqrt2x#,
#=> AH=(AD)/2=(sqrt2x)/2#,
given maximum area of #DeltaABC=128#,
#=> 1/2*BC*AH=128#
#=> 1/2*sqrt2x*(sqrt2x)/2=128#
#=> 1/2*x^2=128#
#=> x=16# cm
#=> AH=(sqrt2x)/2=(sqrt2*16)/2=8sqrt2# cm

Sol. 2)
enter image source here
Let #AB=AC=x#,
#=># area #DeltaABC=1/2*x^2*siny#
as maximum value of #siny# is 1, when #siny=1#, maximum area of #DeltaABC# can be obtained.
#=> siny=1, => y=90^@#
#=> 1/2*x^2=128, => x=sqrt256=16#
#=> angleABC=angleACB=90/2=45^@#
#=> AH=xsinw=16sin45=16*sqrt2/2=8sqrt2# cm