How Solve it? Differentiate this function, thank you!

enter image source here

1 Answer
Mar 15, 2017

dfdx=20x(4x27x8)(6x27x4)

Explanation:

As we have to find derivative of a product of polynomials, we can use product rule here. It states that if f(x)=g(x)h(x)k(x)

then dfdx=

dgdx×h(x)×k(x)+dhdx×g(x)×k(x)+dkdx×g(x)×h(x)

Here f(x)=5x2(4x27x8)2

= 5x2(4x27x8)(4x27x8)

Hence dfdx=

5×2x(4x27x8)(4x27x8)+(8x7)×5x2(4x27x8)+(8x7)×5x2(4x27x8)

= 10x(4x27x8)2+2×5x2(8x7)(4x27x8)

= 10x((4x27x8)2+x(8x7)(4x27x8))

= 10x(4x27x8)((4x27x8)+x(8x7))

= 10x(4x27x8)(4x27x8+8x27x)

= 10x(4x27x8)(12x214x8)

= 20x(4x27x8)(6x27x4)