How to answer this questions: coordinates of the midpoints and finding the equations of lines AC?
1 Answer
Jan 30, 2018
Explanation:
(a)
given A(x1,y1) and B(x2,y2)
then the coordinates of the midpoint (M) of AB
∙xM=[12(x1+x2),12(y1+y2)]
⇒M=[12(9+5),12(10+0)]=(7,5)
⇒N=[12(9+13),12(10+0)]=(11,5)
(b)
equations of lines AC and BC
the equation of a line in slope-intercept form is.
∙xy=mx+b
where m is the slope and b the y-intercept
calculate the slope m using the gradient formula
∙xm=y2−y1x2−x1
⇒mAC=10−09−5=104=52
⇒y=52x+b←partial equation
to find b substitute the coordinates of either A or C
into the partial equation
using A(5,0) then
0=252+b⇒b=−252
⇒y=52x−252←equation of AC
Similarly for the equation of BC
mBC=10−09−13=10−4=−52
⇒y=−52x+b
using B(13,0) then
0=−652+b⇒b=652
⇒y=−52x+652←equation of BC