How to divide 1^2, 2^2, ..., 81^2 set into 3 subsets with equal sum and 27 numbers in each?

1 Answer
Mar 24, 2018

See explanation...

Explanation:

Let's try a cyclic permutation on the first 9 squares:

1^2+5^2+9^2 = 107

2^2+6^2+7^2 = 89

3^2+4^2+8^2 = 89

Applying the same permutation to the next 9 squares we get:

10^2+14^2+18^2 = 620

11^2+15^2+16^2 = 602

12^2+13^2+17^2 = 602

Applying the same permutation to the next 9 square we get:

19^2+23^2+27^2 = 1619

20^2+24^2+25^2 = 1601

21^2+22^2+26^2 = 1601

Notice that in each of these groups of three sums, the first sum is 18 more than the second and third.

So we can combine these sums cyclically permuted to get:

1^2+5^2+9^2+11^2+15^2+16^2+21^2+22^2+26^2 = 2310

2^2+6^2+7^2+12^2+13^2+17^2+19^2+23^2+27^2 = 2310

3^2+4^2+8^2+10^2+14^2+18^2+20^2+24^2+25^2 = 2310

Apply the same permutation to the second and third groups of 27 squares to get a solution for 81 squares...

color(white)(0)1^2+color(white)(0)5^2+color(white)(0)9^2+11^2+15^2+16^2+21^2+22^2+26^2+
28^2+32^2+36^2+38^2+42^2+43^2+48^2+49^2+53^2+
55^2+59^2+63^2+65^2+69^2+70^2+75^2+76^2+80^2 = 60147

color(white)(0)2^2+color(white)(0)6^2+color(white)(0)7^2+12^2+13^2+17^2+19^2+23^2+27^2+
29^2+33^2+34^2+39^2+40^2+44^2+46^2+50^2+54^2+
56^2+60^2+61^2+66^2+67^2+71^2+73^2+77^2+81^2 = 60147

color(white)(0)3^2+color(white)(0)4^2+color(white)(0)8^2+10^2+14^2+18^2+20^2+24^2+25^2+
30^2+31^2+35^2+37^2+41^2+45^2+47^2+51^2+52^2+
57^2+58^2+62^2+64^2+68^2+72^2+74^2+78^2+79^2 = 60147