How to divide the first expression by the second? : 1) #2x^3-7x^2+15x-3, x-3#
1 Answer
Jan 18, 2018
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(2x^2)(x-3)color(magenta)(+6x^2)-7x^2+15x-3#
#=color(red)(2x^2)(x-3)color(red)(-x)(x-3)color(magenta)(-3x)+15x-3#
#=color(red)(2x^2)(x-3)color(red)(-x)(x-3)color(red)(+12)(x-3)color(magenta)(+36)-3#
#color(red)(2x^2)(x-3)color(red)(-x)(x-3)color(red)(+12)(x-3)+33#
#"quotient "=color(red)(2x^2-x+12)," remainder "=33#
#rArr(2x^3-7x^2+15x-3)/(x-3)#
#=2x^2-x+12+33/(x-3)#