How to do this?

enter image source here

2 Answers

0,2π3,4π3

Explanation:

Using identity:

cos(2x)=2cos2x1

2cos2x1cosx=0

Let cosx=m

2m21m=0

Factor:

(2m+1)(m1)=0m=1andm=12

Substitute m=cosx

cosx=1

cosx=12

cosx=1x=0

cosx=12x=2π3,4π3

Dec 9, 2017

0;2π3;4π3;π

Explanation:

cos 2x - cos x = 0
Replace cos 2s by (2cos2x1)
2cos2xcosx1=0.
Solve this quadratic equation for cos x.
Since a + b + c = 0, use shortcut. The 2 real roots are:
cos x =1 and cosx=ca=12
a. cos x = 1
Unit circle gives 2 solutions:
x = 0, and x=2π
b. cosx=12
Trig table and unit circle give 2 solutions
x=±2π3
The arc 2π3 is co-terminal to arc 4π3
Answers for [0,2π]:
0;2π3;4π3;2π