Given: f(x)=2x^5-x^3+x^2+4f(x)=2x5−x3+x2+4
Target to achieve: g(x)=color(green)(-6x^5-3x^3+3x^2+3)g(x)=−6x5−3x3+3x2+3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the first term in f(x)f(x) which is 2x^52x5
We need to change this into -6x^5−6x5 and this can be achieved by using: (-3)xxf(x)(−3)×f(x) It will change all the other terms in f(x)f(x) but we can adjust them as we go along.
+2x^5-x^3+color(white)("d")x^2+4+2x5−x3+dx2+4
ul(color(white)("ddddddddddddd.d")-3)larr"Multiply"
-6x^5+3x^3-3x^2-12
We now have the target x^5 term ->-3f(x) but the rest does not match the target. Thus we determine the adjustment by applying a subtraction.
Targetcolor(white)(".")->-6x^5-3x^3+3x^2+3
-3f(x) ->ul(-6x^5+3x^3-3x^2-12larr" Subtract")
color(white)("dddddddddddd")color(red)(0-6x^3+6x^2+15)
Giving color(white)("d")-3f(x)color(red)(-6x^3+6x^2+15larr" The adjustment")
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Check")
-3f(x)->color(white)("dddddd")-6x^5+3x^3-3x^2-12
The adjustment -> ul(color(white)("dddddd")color(red)(-6x^3+6x^2+15)larr" Add")
color(white)("dddddddddddddddd")-6x^5-3x^3+3x^2+3
The target ->color(white)("ddddd")color(green)(-6x^5-3x^3+3x^2+3)
A perfect match so -3f(x) -6x^3+6x^2+15 is correct