We have: cos(x) = frac(1)(2)cos(x)=12; 0 le x le 2 pi0≤x≤2π
Let the reference angle be cos(x) = frac(1)(2)cos(x)=12:
Applying arccosarccos to both sides of the equation:
Rightarrow arccos(cos(x)) = arccos(frac(1)(2))⇒arccos(cos(x))=arccos(12)
Rightarrow x = frac(pi)(3)⇒x=π3
So, the reference angle is x = frac(pi)(3)x=π3
Now, the interval is given as 0 le x le 2 pi0≤x≤2π, covering all four quadrants.
The value of cos(x)cos(x) is positive, i.e. + frac(1)(2)+12.
So, we need to find the values of xx in the first and fourth quadrants (where values of cos(x)cos(x) are positive).
Rightarrow x = frac(pi)(3), 2 pi - frac(pi)(3)⇒x=π3,2π−π3
Rightarrow x = frac(pi)(3), frac(6 pi)(3) - frac(pi)(3)⇒x=π3,6π3−π3
therefore x = frac(pi)(3), frac(5 pi)(3)
Therefore, the solutions to the equation are x = frac(pi)(3) and x = frac(5 pi)(3).