How to evaluate this indefinite integral ∫[10sin(x)]/[1+cos^2(x)]dx?

1 Answer
Dec 2, 2017

The answer is =-10arctan(cosx)+C

Explanation:

Perform this integral by substitution

Let u=cosx, =>, du=-sinxdx

Therefore,

int(10sinxdx)/(1+cos^2x)=-10int(du)/(1+u^2)

Let u=tantheta

du=sec^2thetad theta

1+tan^2theta=sec^2theta

So,

int(10sinxdx)/(1+cos^2x)=-10int(sec^2thetad theta)/(1+tan^2theta)

=-10int(sec^2thetad theta)/(sec^2theta)

=-10intd theta

=-10theta

=-10rctanu

=-10arctan(cosx)+C