How to expand cos(x+h) in powers of x and h?

1 Answer
Oct 3, 2016

cos(x+h) = sum_(n=0)^oo(1/(n!) sum_(k=0)^n((n),(k))cos((n+k)pi/2)x^(n-k)h^k)

Explanation:

The general expression of the Taylor expansion for functions with two variables is

f(x,h)=sum_(n=0)^oo(1/(n!) sum_(k=0)^n((n),(k))((partial^nf)/(partialx^(n-k)partialh^k))_({x_0,h_0})(x-x_0)^(n-k)(h-h_0)^k)

In this case, considering x_0=0,h_0=0

((partial^nf)/(partialx^(n-k)partialh^k))_(x=0,h=0) = cos((n+k)pi/2)

so

cos(x+h) = sum_(n=0)^oo(1/(n!) sum_(k=0)^n((n),(k))cos((n+k)pi/2)x^(n-k)h^k)

but

cos((n+k)pi/2) = i^(n+k)((1+(-1)^(n+k))/2) and

((n),(k)) = (n!)/((n-k)!k!)

so

cos(x+h) = sum_(n=0)^oosum_(k=0)^n ( i^(n+k)((1+(-1)^(n+k))/2))/((n-k)!k!)x^(n-k)h^k

with i = sqrt(-1)

Another way to do that is knowing that from

cosx = sum_(k=0)^oo (-1)^k(x^(2k))/(2k!) follows

cos(x+h) = sum_(k=0)^oo(-1)^k((x+h)^(2k))/(2k!) but here the variables x+h appear added.

Multivariate series handling is very cumbersome because the required notation effort needed.