How to Factorize #256-x^2-2xy-y^2#?
1 Answer
Sep 23, 2017
Explanation:
The difference of squares identity can be written:
#A^2-B^2 = (A-B)(A+B)#
Use this with
#256-x^2-2xy-y^2 = 16^2-(x^2+2xy+y^2)#
#color(white)(256-x^2-2xy-y^2) = 16^2-(x+y)^2#
#color(white)(256-x^2-2xy-y^2) = (16-(x+y))(16+(x+y))#
#color(white)(256-x^2-2xy-y^2) = (16-x-y)(16+x+y)#