How to find dy/dx, if y=ln(8x^2+9y^2) ?

1 Answer
Nov 3, 2016

dy/dx=(16x)/(8x^2+9y^2-18y)

Explanation:

y=ln(8x^2+9y^2)

dy/dx=(16x)/(8x^2+9y^2)+(18y)/ (8x^2+9y^2) dy/dx

dy/dx -(18y)/ (8x^2+9y^2) dy/dx=(16x)/(8x^2+9y^2)

dy/dx(1-(18y)/ (8x^2+9y^2) )=(16x)/(8x^2+9y^2)

dy/dx((8x^2+9y^2-18y)/ (8x^2+9y^2) )=(16x)/(8x^2+9y^2)

dy/dx=((16x)/(8x^2+9y^2))/((8x^2+9y^2-18y)/ (8x^2+9y^2) )

dy/dx=(16x)/(8x^2+9y^2-18y)