How to find range of the function? f(x)=arcsin(x)/1+x^2

1 Answer
Jul 25, 2018

Range: [ -pi/4, pi/4 ].

Explanation:

arcsin x is an odd function So is y. And so, the graph is

symmetrical about O.

Graph of the given function:

graph{((1+x^2)y-arcsin x)(x^2-1)(y^2-1/16(pi)^2)=0[-3 3 -1.5 1.5]}

Note that the numerator arcsinx[π2,π2].

The denominator (1+x2)[1,).

When y=π4,arcsinx=(1+x2)π4,

The graph for solving this equation reveals x = 1

graph{y-arcsinx + 1/4 pi ( 1 + x^2 ) = 0}

The answer is OK.