How to find the general equation of 2cos2theta=4costheta-3?

2 Answers
Jun 5, 2018

theta = pi/3+2npi where n is an integer

Explanation:

2cos(2theta)=4costheta-3

2(cos^2theta-sin^2theta)=4costheta-3

2(2cos^2theta-1)=4costheta-3

4cos^2theta-2=4costheta-3

4cos^2theta-4costheta+1=0

(2costheta-1)^2=0

2costheta-1=0

costheta=1/2

theta= cos^(-1)(1/2)

theta = pi/3+2npi where n is an integer

Jun 5, 2018

The general solution is θ = 2 n pi ± 60, where n in Z

Explanation:

Note: General solution instead of general equation is required

2 cos 2 theta = 4 cos theta -3 or

2 (2 cos^2 theta -1) = 4 cos theta -3 or

4 cos^2 theta -2 = 4 cos theta -3 or

4 cos^2 theta -2 -4 cos theta +3 =0 or

4 cos^2 theta -4 cos theta +1 =0 or

(2 cos theta -1)^2=0 :. 2 cos theta -1=0 or

2 cos theta =1 or cos theta = 1/2 ; cos 60 =1/2

and cos (-60)=1/2 :. alpha= +-60^0

The general solution is θ =2 n pi ± 60, where n in Z [Ans]